# Hydroxy acids

# Monobasic hydroxyacids

## Nomenclature

Trivial name: parent carboxylic acid and hydroxyl group represented by Greek letters

**IUPAC name**: position of hydroxyl is indicated by number.

e.g. CH<sub>3</sub>CH(OH)CH<sub>2</sub>COOH β-hydroxybutyric acid (trivial name),

2-hydroxybutanoic acid or 1-hydroxypropane-1-carboxylic acid (IUPAC)

# Preparation

## From keto ester

Reduction; Keto-ester  $\rightarrow$  corresponding hydroxyl ester

Hydrolysis: hydroxyl ester  $\rightarrow$  corresponding acids

#### α-hydroxyacids

aldehyde/ketone +KCN  $\rightarrow$  Cyanohydrin  $\rightarrow \alpha$ -hydroxyacids

 $\alpha$ -bromoacids  $\rightarrow \alpha$ -hydroxyacids

#### β-hydroxyacids

Reformatsky reaction

 $\alpha$ -bromoacid ester + Zn + carbonyl compound  $\rightarrow \beta$ -hydroxyacids

Aldol reaction followed by oxidation with tollens reagent

Aldehyde  $\rightarrow \beta$ -hydroxyaldehyde  $\rightarrow \beta$ -hydroxyacids

Ethylene  $\rightarrow$  ethylene oxide  $\rightarrow$  ethylene glycol  $\rightarrow$  ethylene chlorohydrin  $\rightarrow$  ethylene cyanohydrin- $\beta$ -hydroxyacids

## Physical properties

CH<sub>2</sub>(OH)COOH glycollic acid is solid higher ones are liquid

Highly soluble in water

## Chemical properties

When acid functionality is masked the it behaves as hydroxy compounds when hydroxyl group is protected then it reacts as acid

 $CH_2(OH)COOH + PCI5 \rightarrow CH_2(CI)COCI$ 

#### Oxidation

 $\alpha$ -hydroxyacid: RCH(OH)COOH + H<sub>2</sub>SO<sub>4</sub>  $\rightarrow$  RCHO + HCOOH

 $\alpha$ -hydroxyacid: R<sub>2</sub>C(OH)COOH + H<sub>2</sub>SO<sub>4</sub>  $\rightarrow$  R<sub>2</sub>CO + HCOOH

#### $RCH(OH)CH_2COOH + KMnO_4 + OH^- \rightarrow RCOCH_3$

# Reduction

 $RCH(OH)COOH + HI \rightarrow RCH_2COOH$ 

# Effect of heat

 $\alpha$ -hydroxyacid  $\rightarrow$  Lactides intermolecular cyclic ester

 $\beta$ -hydroxy acid  $\rightarrow \beta$ , $\gamma$ - unsaturated acid

y-hydroxy acids/  $\delta$ -hydroxyacids  $\rightarrow$  lactones, intramolecular cyclic ether

Lactones IUPAC –olides e.g  $\delta$ -valerolactone or 1,5-pentaolide

Tetramethylene glycol  $\rightarrow \gamma$ -butyrolactone  $\rightarrow$  polyamides

# Glycollic acid, hydroxyacetic acid, CH<sub>2</sub>(OH)COOH

Source; beet, sugar cane, grapes

#### Preparation

Laboratory;

Chloroacetic acid + sodium carbonate +water  $\rightarrow$  Pot. Salt of glycollic acid  $\rightarrow$  glycollic acid

 $CICH_2COOH + Na_2CO_3 + H_2O \rightarrow CH_2(OH)COOK \rightarrow CH_2(OH)COOH$ 

Formalin + Pot. cyanide + water  $\rightarrow$  Pot. Salt of glycollic acid  $\rightarrow$  glycollic acid

 $\mathsf{HCHO} + \mathsf{KCN} + \mathsf{H_2O} \rightarrow \mathsf{CH_2(OH)COOK} \rightarrow \mathsf{CH_2(OH)COOH}$ 

Industrial

HCHO + CO +  $H_2O \rightarrow CH_2(OH)COOH$  acid catalysed

#### Use

Glycollic acid  $\rightarrow$  Oxalic acid

 $CH_2(OH)COOH + HNO_3 \rightarrow COOHCOOH$ 

# Lactic acid, $\alpha$ -hydroxypropionic acid, CH<sub>3</sub>CH(OH)COOH

Source; milk

#### Preparation

In lab by general procedure

Industrially

Milk + bacillus acidi lactiti → Lactic acid

Use

In tanning, dyeing, ethyl lactate as solvent

On chiral center. L(+)-lactic acid m.p. 26°C, from meet, D(-)- Lactic acid m.p. from sugar fermentation, racemic D,L( $\pm$ )-lactic acid

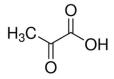
# Hydroxy – dibasic and polybasic acid

- 1. Tartronic acid, Hydroxymalonic acid, CH(OH) (COOH)<sub>2</sub>
- 2. Malic acid, hydroxysuccinic acid, CH<sub>2</sub>(COOH)C\*H(OH)COOH
- 3. Tartaric acid C\*H(OH) (COOH)C\*H(OH)COOH

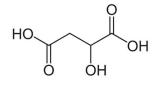
# Tartaric acid

# Source:

grape juice


# Extraction:

- Grape juice on fermentation give argol, reddish brown crystalline
- Recrystallization of argol gives cream of tartar, white crystal (KHC<sub>4</sub>H<sub>4</sub>O<sub>4</sub>)
- $\succ \qquad \mathsf{KHC}_4\mathsf{H}_4\mathsf{O}_4 + \mathsf{Ca}(\mathsf{OH})_2 \rightarrow \mathsf{CaC}_4\mathsf{H}_4\mathsf{O}_4 \downarrow + \mathsf{K}_2\mathsf{C}_4\mathsf{H}_4\mathsf{O}_4 + 2\mathsf{H}_2\mathsf{O}_4 + \mathsf{Ca}(\mathsf{OH})_2 \rightarrow \mathsf{CaC}_4\mathsf{H}_4\mathsf{O}_4 \downarrow + \mathsf{K}_2\mathsf{C}_4\mathsf{H}_4\mathsf{O}_4 + \mathsf{Ca}(\mathsf{OH})_2 \rightarrow \mathsf{CaC}_4\mathsf{H}_4\mathsf{O}_4 \rightarrow \mathsf{CaC}$
- $\succ \qquad \mathsf{CaC}_4\mathsf{H}_4\mathsf{O}_4 + \mathsf{H}_2\mathsf{SO}_4 \rightarrow \mathsf{H}_2\mathsf{C}_4\mathsf{H}_4\mathsf{O}_4 + \mathsf{CaSO}_4$


## Mol formula: C<sub>4</sub>H<sub>6</sub>O<sub>6</sub>

## Structure elucidation

1. Thermal decarboxylation: Tartaric acid + heat  $\rightarrow$  pyruvic acid(CH<sub>3</sub>COCOOH) + CO<sub>2</sub> + H<sub>2</sub>O



2. Reduction dehydroxylation: Tartaric acid +HI  $\rightarrow$  malic acid CH<sub>2</sub>(COOH)C\*H(OH)COOH



# Synthesis

 $\mathsf{Glyoxal} + \mathsf{HCN} \rightarrow \mathsf{Glyoxal} \text{ cyanohydrin}$ 



CHOCHO +HCN  $\rightarrow$  CH(OH)(CN)CH(OH)(CN)

Glyoxal cyanohydrin +  $H_2O \rightarrow Tartaric acid$ 

 $CH(OH)(CN)CH(OH)(CN) + H_2O \rightarrow CH(OH)(COOH)CH(OH)(COOH)$ 

( $\alpha$ ,  $\alpha$ '-dihydroxysuccinic acid or 2,3-dihydroxybutanedioc acid)

C\*H(OH)(COOH) C\*H(OH)(COOH)

# Stereochemistry

Two chiral carbons.

four (2<sup>2</sup>) enantiomers possible.

Have centre of symmetry so two isomers are meso forms.

So D(+)-Tartaric acid, L(-)-tartaric acid, meso-tartaric acid and DL-tartaric acid or racemic tartaric acid

Ambiguity in stereochemistry

1. Building up, carbohydrate Chemistry

D(+)-Glyceraldehyde  $\rightarrow$  (-)-Tartaric acid; so (-) is D form and (+)- form is L form

2. Stepping down

(+)-tartaric acid  $\rightarrow$  D(-)-Glyceric acid; so (+) is D form and (-) is L form

D(+) Tartaric acid, (R,R) tartaric acid

# Citric acid

Source: citrus fruit

Isolation

Lemmon juice + 10%NaOH added till brown ppt forms. Filter

10% CaCl<sub>2</sub> PPt filter

Residue is washed in hot water and filtered

Acidified with sulphuric acid filtered.

Filtrate is concentrated and crystallized.

# Structure elucidation

Mol formula; C<sub>6</sub>H<sub>8</sub>O<sub>7</sub>

Mono acetyl derivative; so mono hydroxyl

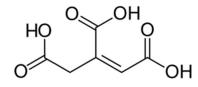
Three series of salts; tribasic acid

Oxidation:

Citric acid + Concetrated  $H_2SO_4 \rightarrow CO_2 + A$ ;  $\alpha$ -hydroxy is present.



 $A \rightarrow 2CO_2 + Acetone$ 

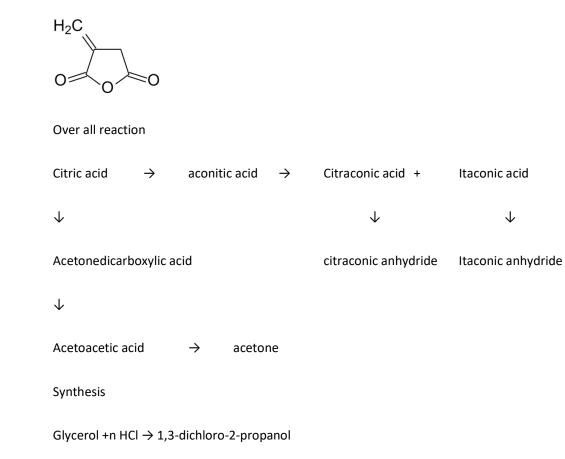

Hydroxyl is present in position of carbonyl. A is acetonedicarboxylic acid

0 0 0 ↓ ↓ ↓ OH

(COOH)CH<sub>2</sub>C(O)CH<sub>2</sub>(COOH)

Dehydration: Citric acid + H<sub>2</sub>SO<sub>4</sub>

On heating or treatment with concentrated  $H_2SO_4$ , citric acid forms aconitic acid (It has a nutty flavour, which makes it useful as an artificial nut flavour.) and a molecule of water;  $\beta$ -hydroxy acids is present.




On pyrolysis E/Z-aconitic acid, Z-citraconic acid (mesaconic acid), itaconic acid and their anhydrides.



Formation of anhydrides show citraconic and itaconic acids are 1,2-dicarboxylic acid.

Aconitic acid upon decarboxylation produce citraconic acid and itaconic acid, isomers differing in position of double bond.



1,3-dichloro-2-propanol + [O]  $\rightarrow$  1,3-dichloroacetone

1,3-dichloroacetone +HCN  $\rightarrow$  1,3-dichloroacetocyanohydrin

1,3-dichloroacetocyanohydrin + KCN  $\rightarrow$  1,3-dicyanoacetocyanohydrin

1,3-dicyanoacetocyanohydrin +H<sub>2</sub>O  $\rightarrow$  citric acid